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Abstract
The steady state of a generalized coagulation–decoagulation model on a one-
dimensional lattice with reflecting boundaries is studied using a matrix-product
approach. It is shown that the quadratic algebra of the model has a four-
dimensional representation provided that some constraints on the microscopic
reaction rates are fulfilled. The dynamics of a product shock measure with two
shock fronts, generated by the Hamiltonian of this model, is also studied. It
turns out that the shock fronts move on the lattice as two simple random walkers
which repel each other provided that the same constraints on the microscopic
reaction rates are satisfied.

PACS numbers: 05.40.−a, 05.70.Fh, 02.50.Ey, 64.60.i, 04.20.Jb

1. Introduction

The study of microscopic structure and dynamics of traveling wave solutions in multi-species
one-dimensional stochastic systems has attracted people’s attention in this field considerably
in recent years [1–15]. For instance, the microscopic dynamics of shocks are studied for three
families of single-species one-dimensional reaction–diffusion systems with open boundaries
and nearest-neighbor interactions which include the partially asymmetric simple exclusion
process (PASEP), the branching-coalescing random walk (BCRW) and the asymmetric
Kawasaki–Glauber process (AKGP) [4]. It has been shown that in all three systems the
time evolution of a product shock measure with a single shock front is equivalent to that of
a simple random walker on a finite lattice with homogeneous hopping rates in the bulk and
special reflection rates at the boundaries, provided that some constraints on the microscopic
reaction rates are fulfilled. The steady states of these three systems can be essentially written
as a linear superposition of such product shock measures. On the other hand, the steady
states of these systems can be obtained using the matrix-product formulation [16] in which the
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steady-state weights are written in terms of the product of non-commuting operators which
satisfy a quadratic algebra (for a recent review of this approach see [17]). Surprisingly, it
has been found that the conditions under which these operators have two-dimensional matrix
representations are exactly those for a product shock measure to have a simple random walk
dynamics in these systems [16].

It has been shown in [5] that the existence of a two-dimensional representation for the
quadratic algebra of a multi-species one-dimensional reaction–diffusion system with open
boundaries and nearest-neighbor interactions implies that the steady state of the system can be
written in terms of a linear superposition of product shock measures. It seems that the same is
true for the systems whose quadratic algebras have higher-dimensional matrix representations.
For instance, for the totally asymmetric simple exclusion process with open boundaries it is
known that the quadratic algebra has an infinite-dimensional matrix representation. It has been
shown that this is associated with the fact that the steady state of this system can be written as
a linear superposition of product shock measures with infinite number of shocks [6].

The microscopic dynamics of shock fronts has also been studied in driven-diffusive
systems with more than a single species of particles and also in these systems with next-
nearest-neighbor interactions [10–15].

Despite these efforts it is still generally unclear whether the existence of a finite-
dimensional matrix representation of the quadratic algebra is related to the fact that the
steady state can be expressed as a superposition of product shock measures. In this paper, we
consider a generalized one-dimensional single-species coagulation–decoagulation model with
reflecting boundaries as a new example. We believe that the study of this exactly solvable model
provides us with another piece of evidence for the existence of such relation and definitely
sheds more light on the unknown aspects of this problem. We will show that a product shock
measure with two shock fronts which have simple random walk dynamics can evolve in this
system provided that the microscopic reaction rates satisfy some constraints. This will enable
us to construct the steady state of the system simply by considering a linear superposition
of such measures; however, we will not follow this approach here. Instead we will show
that under the same constraints the quadratic algebra of this model has a four-dimensional
representation.

Our paper is organized as follows. In section 2, we will explain the mathematical
preliminaries and introduce the model. In section 3, we will study the dynamics of a product
shock measure with two shock fronts and investigate the conditions (by imposing some
constraints on the microscopic reaction rates of the model) under which it has a simple time
evolution similar to that of two random walkers moving on a one-dimensional lattice while
reflecting from the boundaries. Section 4 will be devoted to the investigation of whether a
finite-dimensional representation exists for the quadratic algebra of the model under the same
conditions. In the last section, we will discuss the summary of results.

2. The model

We define |P(t)〉 as the probability vector of a Markovian interacting particle system at the
time t. The time evolution of this vector is governed by the master equation which can be
written as a Schrödinger equation in imaginary time as follows:

d

dt
|P(t)〉 = H |P(t)〉, (1)

in which H is an stochastic Hamiltonian. The matrix elements of the Hamiltonian are
the transition rates between different configurations. For a single-species system with
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nearest-neighbor interactions defined on a one-dimensional lattice of length L with reflecting
boundaries the Hamiltonian H is of the following form:

H =
L−1∑
k=1

hk,k+1 (2)

in which

hk,k+1 = I⊗(k−1) ⊗ h ⊗ I⊗(L−k−1),

where I is a 2 × 2 identity matrix and h is a 4 × 4 matrix for the bulk interactions. In the basis
(00, 01, 10, 11) the Hamiltonian h can be written as

h =

⎛
⎜⎜⎝

ω11 ω12 ω13 ω14

ω21 ω22 ω23 ω24

ω31 ω32 ω33 ω34

ω41 ω42 ω43 ω44

⎞
⎟⎟⎠ (3)

in which we have defined the basis vectors

|1〉 =
(

0
1

)
, |0〉 =

(
1
0

)
(4)

associated with the presence of a particle and a hole in each lattice site respectively. Requiring
the conservation of probability, the sum of the elements in each column should be zero;
therefore, one has ωii = −∑

j� =i ωji for i, j = 1, . . . , 4.
In our generalized coagulation–decoagulation model the nonzero reaction rates belong to

the following reactions:

∅ + A → A + ∅ with rate ω32

A + ∅ → ∅ + A with rate ω23

A + A → A + ∅ with rate ω34

A + A → ∅ + A with rate ω24

∅ + A → A + A with rate ω42

A + ∅ → A + A with rate ω43

(5)

in which A and ∅ stand for the presence of a particle and a hole in each lattice site respectively.
This model has already been studied in related literatures in a couple of special cases. For
instance consider the case

ω24 = ω23 = q−1, ω34 = ω32 = q, ω42 = �q, ω43 = �q−1. (6)

The complete spectrum of the Hamiltonian in this case has been obtained exactly [18]. The
steady state of the system has also been studied using both the method of empty intervals
[18] and the matrix-product approach [19]. It turns out that the phase diagram of the model
in this case has two different phases: a low-density phase and a high-density phase which
are separated by a coexistence line. The particle concentration on the lattice in both phases
has exponential behaviors with three different length scales while on the coexistence line it
changes linearly in the bulk of the lattice and grows exponentially near one of the boundaries.
By using the matrix product approach it has been shown that for the special tuning of the
parameters given in (6) the quadratic algebra of the model has a finite-dimensional matrix
representation [19]. Since the system has three different length scales and that these length
scales are determined by the eigenvalues of these matrices [18], the authors in [19] have found
that the minimum dimensionality of these matrices should be four.

The most general case (5) has already been studied on a finite lattice with open boundaries
in which the particles can enter into the system or leave it from the boundaries [4] and also on
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Figure 1. A simple sketch of a double-shock measure. The shock positions are defined at the sites
m and n.

a lattice with periodic boundary conditions [8]. Note that the microscopic reaction rates in our
generalized model are exactly those of the BCRW studied in [4]. As we mentioned before, it
is known that traveling wave solutions exist for the BCRW with open boundaries under some
constraints on the microscopic reaction rates. In [16], the author has shown that in the open
boundary case the steady state can be written as a matrix-product state with a two-dimensional
matrix representation given that the same constraints are satisfied. The authors in [9] have
studied the dynamical phase transition in this system when considered on an infinite lattice.

3. Dynamics of a product shock measure with two shock fronts

In what follows, we consider the most general reaction rates (5) and study the time evolution
of a product shock measure with two shock fronts defined as

|Pm,n〉 =
(

1
0

)⊗m

⊗
(

1 − ρ

ρ

)⊗n−m−1

⊗
(

1
0

)⊗L−n+1

for 0 � m � n − 1 and 1 � n � L + 1 (7)

on a lattice of length L with reflecting boundaries. We define two auxiliary sites 0 and L + 1
for convenience. In figure 1, a simple sketch of a double-shock structure is given. We
investigate the conditions under which the time-evolution equations for (7) are simply those
of two random walkers at sites m and n moving on a finite lattice. It turns out that by imposing
two constraints on the microscopic reaction rates one finds the appropriate answer. These
constraints are found to be

ω24 + ω34

ω42 + ω43
= ω23

ω43
= ω32

ω42
, (8)

provided that the height of the shocks is

ρ = ω42 + ω43

ω42 + ω43 + ω24 + ω34
.

One should note that these constraints are exactly those obtained in [8] for the model with
periodic boundary conditions. Under these constraints the time-evolution equations for |Pm,n〉
take the following form:

H |Pm,n〉 = δ1r |Pm+1,n〉 + δ1l|Pm−1,n〉 + δ2r |Pm,n+1〉 + δ2l|Pm,n−1〉
− (δ1r + δ1l + δ2r + δ2l )|Pm,n〉 for m = 1, . . . , L − 2 and

n = m + 2, . . . , L

H |P0,n〉 = −δ̄|P1,n〉 + δ2r |P0,n+1〉 + δ2l|P0,n−1〉
(9)

− (−δ̄ + δ2r + δ2l )|P0,n〉 for n = 2, . . . , L
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H |Pm,L+1〉 = δ1r |Pm+1,L+1〉 + δ1l|Pm−1,L+1〉 + δ̄|Pm,L〉
− (δ1r + δ1l + δ̄)|Pm,L+1〉 for m = 1, . . . , L − 1

H |P0,L+1〉 = −δ̄|P1,L+1〉 + δ̄|P0,L〉
H |Pm,m+1〉 = 0 for m = 0, . . . , L

in which the bulk hopping rates for the shock fronts (random walkers) are:

δ1l = ω42

ρ
,

δ1r = ω43
(1 − ρ)2

ρ
+ ω24ρ,

δ2l = ω42
(1 − ρ)2

ρ
+ ω34ρ,

δ2r = ω43

ρ

(10)

and also the reflection rate from the boundaries is found to be

δ̄ = δ2l − δ1r + δ2l

δ1l + δ2r

δ2r . (11)

Note that the original model has six independent parameters while by imposing the
constraints (8) only four independent parameters are remained.

The last equation in (9) implies that an empty lattice is a trivial steady state of the model.
It should be mentioned that the random walkers repel each other so that their positions cannot
get closer than a single lattice site. This has already been observed in [7] for the special choice
of parameters given in (6). For the present case, as in [7], one can simply define a new measure
|P̃m,n〉 as

|P̃m,n〉 =
(

1
0

)⊗m

⊗
(

0
1

)⊗n−m−1

⊗
(

1
0

)⊗L−n+1

for 0 � m � n − 1 and 1 � n � L + 1 (12)

and investigate its dynamics to see that the shock positions never meet each other at two
consecutive sites. The reason for this goes back to the fact that the dynamical rules (5) do not
allow an empty system to be generated from a system with particles. In fact the system has two
different steady states. The trivial steady state, as we mentioned above, is the one without any
particles. The other one, which is a nontrivial steady state, contains some particles. If we start
with an empty lattice, it always remains empty. In contrast, if we start with a partially-filled
lattice, it will reach to an steady state which contains particles. It can be shown that the
nontrivial steady state of the system can be written as a linear superposition of |Pm,n〉’s. This
will be discussed and presented elsewhere. In the following section, we are going to calculate
the steady state of the system using the matrix-product approach. The question is that whether
or not a finite-dimensional matrix representation exists for the quadratic algebra of this model
under the constraints (8).

4. Matrix-product steady state

According to the matrix product formalism the stationary probability distribution P(τ) of any
configuration τ = {τi |i = 1, . . . , L} is assumed to be of the form

P(τ) = 1

ZL

〈W |
L∏

i=1

(τiD + (1 − τi)E)|V 〉 (13)
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in which the occupation number τi is defined as follows: τi = 0 if the site i is empty and τi = 1
if it is occupied by a particle. The factor ZL in (13) is a normalization factor and called the
partition function of the system and can be easily calculated using the normalization condition∑

{τi } P(τ) = 1. For a system described by the Hamiltonian of type (2), the operators D and
E, which stand for the presence of a particle and an empty site at each lattice site respectively,
beside the vectors 〈W | and |V 〉 should satisfy the following quadratic algebra:

h

[(
E

D

)
⊗

(
E

D

)]
=

(
Ē

D̄

)
⊗

(
E

D

)
−

(
E

D

)
⊗

(
Ē

D̄

)
, 〈W |

(
Ē

D̄

)
= 0,

(
Ē

D̄

)
|V 〉 = 0

(14)

in which the operators Ē and D̄ are two auxiliary operators and h is of the form (3). Using
(14) one can simply calculate the corresponding quadratic algebra of our model,

[C, C̄] = [E, Ē] = 0,

(ω32 + ω42 + ω24)EC − (ω32 + ω42 + ω24 − ω23)E
2 − ω24C

2

+ (ω24 − ω23)CE = ĒC − EC̄,

(ω34 − ω32)EC − (ω23 + ω43 + ω34 − ω32)E
2 − ω34C

2

+ (ω34 + ω23 + ω43)CE = C̄E − CĒ,

〈W |Ē = 〈W |C̄ = 0,

Ē|V 〉 = C̄|V 〉 = 0

(15)

in which we have defined C := D + E and C̄ := D̄ + Ē.
For the special tuning of the parameters given in (6) the authors in [19] have shown, for

the first time, that the quadratic algebra (15) has a four-dimensional matrix representation
with non-diagonal Ē and C̄. In our generalized model, it turns out that the quadratic
algebra (15) also has a four-dimensional matrix representation provided that the constraints
(8) are fulfilled. Note that these constraints are automatically fulfilled for (6).

As long as the eigenvalues of the matrix C are not equal and in an appropriate basis this
matrix can be brought into a diagonal form. We have found that the matrices C and E besides
the auxiliary matrices C̄ and Ē have the following four-dimensional representation:

C =

⎛
⎜⎜⎜⎝

δ1r

δ1l

δ2r

δ2l
0 0 0

0 (1 − ρ) δ2r

δ2l
0 0

0 0 δ2r

δ2l
0

0 0 0 1

⎞
⎟⎟⎟⎠ ,

C̄ =

⎛
⎜⎜⎝

0 0 0 0
0 ρ δ2r

δ2l
(δ1r − (1 − ρ)δ1l ) 0 0

0 0 0 0
0 0 0 0

⎞
⎟⎟⎠ ,

E =

⎛
⎜⎜⎜⎝

δ1r

δ1l

δ2r

δ2l
e12 e13 e14

0 (1 − ρ)2 δ2r

δ2l
0 e24

0 0 (1 − ρ) δ2r

δ2l
e34

0 0 0 1

⎞
⎟⎟⎟⎠ ,

Ē =

⎛
⎜⎜⎝

0 0 ē13 ē14

0 0 0 0
0 0 −ρ δ2r

δ2l
(δ1r − (1 − ρ)δ1l ) ē34

0 0 0 0

⎞
⎟⎟⎠

(16)
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in which e12, e13, ē13, ē14 and ē34 are functions of ωij ’s and are presented in appendix A. In this
representation, we have chosen the other parameters e14, e24 and e34 in (16) as free parameters.
On the other hand, the vectors |V 〉 and 〈W | have the following matrix representations:

|V 〉 =

⎛
⎜⎜⎝

v1

0
1
v4

⎞
⎟⎟⎠ , 〈W | = (1, 0, w3, w4) (17)

in which v1 and w4 are free parameters, while v4 and w3 are complicated functions of ωij ’s
and are presented in appendix A. Nevertheless, if one looks for a nontrivial steady state then
the relation between v1 and w4 should be obtained by requiring that the probability of finding
an empty lattice in long-time limit is zero, i.e.,

〈W |EL|V 〉 = 0. (18)

By considering the constraint (18) the partition function of the model can be easily calculated
as follows:

ZL = a1

(
δ1r

δ1l

δ2r

δ2l

)L

+ a2

(
(1 − ρ)2 δ2r

δ2l

)L

+ a3

(
δ2r

δ2l

)L

+ a4 (19)

in which the coefficients ai’s are function of ωij ’s. The explicit form of these coefficients are
presented in appendix B. The phase diagram of the model can now be obtained by analyzing
the thermodynamical behavior of the partition function ZL (i.e. in the limit L → ∞) which
obviously depends on the values of the hopping rates of the shock positions, i.e. δ1l , δ1r , δ2l

and δ2r . One should note that the model has a mirror symmetry which means that it is invariant
under the following transformations:

ω23 ↔ ω32

ω24 ↔ ω34

ω42 ↔ ω43

i −→ L − i + 1.

(20)

Defining two new variables x := δ1r

δ1l
and y := δ2r

δ2l
, it can be shown using (10) that the case

(x > 1, y < 1) never happens because ρ then has to be negative. In terms of the two variables
x and y the phase diagram of the model has four regions defined as

Region I for x > 1, y > 1, xy > 1,

Region II for x < 1, y > 1, xy > 1,

Region III for x < 1, y > 1, xy < 1,

Region IV for x < 1, y < 1, xy < 1.

The phase diagram of the model is shown in figure 2. One can easily check that under the
symmetry (20) the two variables x and y become 1/y and 1/x respectively. This implies that
we need only to study two phases (either I and II or III and IV) since the information for
the two other phases can be easily obtained using (20). In what follows we only consider
the two phases III and IV. In the phase III, the left random walker (the left shock front) has
more tendency to move leftwards while the right random walker (the right shock front) has
more tendency to move rightwards. In this phase, the mean distance between the two random
walkers is of order L and therefore the density of particles in the bulk of the lattice increases
(this can be understood by looking at the definition of |Pm,n〉). We call this phase the high-
density phase. In contrast, in the phase IV both random walkers have more tendency to move
leftwards, and therefore, the mean distance between the random walkers (the shock fronts)

7
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1

1

I
II

III

IV Forbidden

x

y

Figure 2. The phase diagram of the model in terms of the two variables x and y. The four regions
I–IV are defined in the text. The coexistence line between the regions II and III is y = 1

x
.

decreases. In this phase, the mean distance between the two random walkers is of order 1.
Since the mean density of particles decreases in this phase, it is called the low-density phase.
Since the matrix representation of the quadratic algebra is finite dimensional, the density
profile of the particles defined as

〈ρk〉 =
∑

{τi } τkP (τ)

ZL

= 〈W |Ck−1(C − E)CL−k|V 〉
ZL

for 1 � k � L (21)

either has linear or exponential behaviors. Note that in calculating (21) the constraint (18)
should also be applied to its nominator. It turns out that (21) has only exponential behaviors
in both phases III and IV. In the low-density (high-density) phase the mean density of the
particles in the bulk of the lattice is zero (ρ) while at the boundaries the density profile of the
particles changes exponentially with two correlation lengths |ln y|−1 and |ln xy|−1 (|ln y|−1

and |ln x|−1).
It is also interesting to study the coexistence line between the two phases III and IV, i.e.

on the line δ2r

δ2l
= 1 for δ1r

δ1l
< 1. One should note that in this case two eigenvalues of the matrix

C become equal, and thereby cannot be diagonalized. On the coexistence line between the
two phases III and IV, we have found the following matrix representation for the operators
in (15):

C =

⎛
⎜⎜⎝

δ1r

δ1l
0 0 0

0 (1 − ρ) 0 0
0 0 1 c34

0 0 0 1

⎞
⎟⎟⎠ , C̄ =

⎛
⎜⎜⎝

0 0 0 0
0 ρ(δ1r − (1 − ρ)δ1l ) 0 0
0 0 0 0
0 0 0 0

⎞
⎟⎟⎠ ,

E =

⎛
⎜⎜⎝

δ1r

δ1l
e12 e13 e14

0 (1 − ρ)2 0 e24

0 0 (1 − ρ) e34

0 0 0 1

⎞
⎟⎟⎠ , Ē =

⎛
⎜⎜⎝

0 0 ē13 ē14

0 0 0 0
0 0 −ρ(δ1r − (1 − ρ)δ1l ) ē34

0 0 0 0

⎞
⎟⎟⎠

(22)

8
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and for the vectors,

|V 〉 =

⎛
⎜⎜⎝

v1

0
1
v4

⎞
⎟⎟⎠ , 〈W | = (1, 0, w3, w4) (23)

which is valid if the reaction rates ωij ’s in (5) satisfy both (8) and the following constraint:

ω43 = ω42

(
ω24 + ω34

ω42 + ω43 + ω24 + ω34

)2

+ ω34

(
ω42 + ω43

ω42 + ω43 + ω24 + ω34

)2

. (24)

As in the diagonal case some of the matrix elements are free. In (22) the free parameters are
chosen to be c34, e14, e24 and e34. The rest of the matrix elements are functions of ωij ’s and are
presented in appendix A. The two elements v1 and w4 can be eliminated from the calculations
by applying the constraints (18) while the other elements v4 and w3 are presented in appendix
A. The partition function of the system, after applying the constraint (18), is obtained to be

ZL = b1

(
δ1r

δ1l

)L

+ b2(1 − ρ)2L + b3L + b4, (25)

where the coefficients bi’s are complicated functions of the reaction rates ωij ’s. These
coefficients are presented in appendix B. As can be seen, on the coexistence line the left
random walker (the left shock front) has more tendency to move leftwards while the right
random walker (the right shock front) performs an unbiased random walk. In this case, we
expect that the density of particles increases near the left boundary. The density profile of the
particles, defined in (21), can be calculated on this line and it turns out that it is an exponentially
increasing function near the left boundary with a characteristic length |ln x|−1 while it changes
linearly in the bulk of the lattice.

5. Summary and outlook

In this paper, we considered a generalized coagulation–decoagulation model on a finite lattice
with reflecting boundaries and studied the conditions under which the steady-state probability
distribution of the system can be written as a product of non-commutative operators. We started
with a product shock measure with two shock fronts and obtained its dynamics generated by
the Hamiltonian of the system. We found the necessary conditions on the microscopic reaction
rates under which each of the shock fronts has a simple biased random walk dynamics. Finally
by studying the steady state of this system using the matrix-product approach we showed that
its quadratic algebra has a four-dimensional matrix representation under the same conditions.
The phase diagram of the model and also the density profile of the particles in each phase and
on the coexistence line were studied. We saw that the whole phase diagram of the model can
be described by the hopping rates of the shock fronts. The system has three different length
scales. These are given by the eigenvalues of the matrix C which can be written in terms of
the hopping rates of the shock fronts.

One can easily check that for the special tuning of the parameters (6) the constraints (8)
are satisfied and that all of our calculations reduce to those obtained in [19]. It is interesting to
investigate the solutions of (9) in long-time limit and construct the steady state of the system as
a linear superposition of such solutions and then compare the results with those obtained from
the matrix-product approach in the present work. The results will be presented elsewhere.
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Appendix A. The matrix elements

Here we present the matrix elements for the diagonal matrices (16) and the vectors (17). The
matrix elements of E are obtained to be

e12 = (
(e14(ω24 + ω34)

2ω43
(
ω2

24(ω42 − ω43) + ω2
34(ω42 − ω43) + 2ω34ω42(ω42 + ω43)

+ ω42(ω42 + ω43)
2 + ω24(ω42 − ω43)(2ω34 + ω42 + ω43)

)(
ω2

24(ω42 − ω43)

+ ω2
34(ω42 − ω43) − ω43(ω42 + ω43)

2 + ω34
(
ω2

42 − ω2
43

)
+ 2ω24(ω34(ω42 − ω43)

−ω43(ω42 + ω43))
))/(

e24
(
ω2

24ω42 + 2ω24ω34ω42 + ω34(ω34ω42

+ (ω42 + ω43)
2)

)
(ω42(ω24(−ω42 + ω43) + ω43(2ω34 + ω42 + ω43))

(
ω2

24ω42

+ 2ω24ω34ω42 + ω34(ω34ω42 + (ω42 + ω43)
2)

)
+ ω43

(
ω42(2ω24 + ω34 + ω42)

+ (−ω34 + ω42)ω43)
(
ω2

24ω43 + ω2
34ω43 + ω24(2ω34ω43 + (ω42 + ω43)

2)
))))

,

e13 = ((
e14ω43(ω24 + ω34 + ω42 + ω43)

2
(
ω2

24(ω42 − ω43) + ω34(ω34(ω42 − ω43)

+ ω42(ω42 + ω43)) + ω24(2ω34(ω42 − ω43) − ω43(ω42 + ω43))
)2)/

(e34(ω42 + ω43)
(
ω2

24ω42 + 2ω24ω34ω42 + ω34(ω34ω42 + (ω42 + ω43)
2)

)
× (

ω3
24ω42(ω42 − 2ω43) + ω34ω43

(
ω2

34(−2ω42 + ω43) − 3ω34ω42(ω42 + ω43)

−ω42(ω42 + ω43)
2
)

+ ω2
24

(−3ω42ω43(ω42 + ω43) + ω34
(
2ω2

42 − 6ω42ω43

+ ω2
43

))
+ ω24

(−ω42ω43(ω42 + ω43)
2 + ω34(ω42 + ω43)

(
ω2

42 − 4ω42ω43 + ω2
43

)
+ ω2

34

(
ω2

42 − 6ω42ω43 + 2ω2
43

)))))
.

The other matrix elements e14, e24 and e34 are free. For the matrix Ē we have found

ē13 = e13ω42,

ē14 = −(
e14ω42ω43(ω24 + ω34 + ω42 + ω43)

2(ω42((ω24 + ω34)
2 + ω34ω42)

− ((ω24 + ω34)
2 + (ω24 − ω34)ω42)ω43 − ω24ω

2
43

))/
(
(ω42 + ω43)

(
ω24ω

2
42((ω24 + ω34)

2 + ω34ω42) − ω42
(
2(ω24 + ω34

)3

+ 3
(
ω2

24 + ω24ω34 + ω2
34

)
ω42 + (ω24 + ω34

)
ω2

42

)
ω43 +

(
ω34(ω24 + ω34)

2

− 3
(
ω2

24 + ω24ω34 + ω2
34

)
ω42 − 2(ω24 + ω34)ω

2
42

)
ω2

43

+ (ω24ω34 − (ω24 + ω34)ω42)ω
3
43

))
,

ē34 = −e34ω43.

For the vector elements in (17) we have found

v4 = (
ω2

24(ω42 − ω43) + ω34(ω34(ω42 − ω43) + ω42(ω42 + ω43)) + ω24(2ω34(ω42 − ω43)

−ω43(ω42 + ω43))
)/(

e34
(
ω2

24ω42 + 2ω24ω34ω42 + ω34(ω34ω42 + (ω42 + ω43)
2)

))
,

w3 = −(
e14ω42(ω24 + ω34 + ω42 + ω43)

2(ω42((ω24 + ω34)
2 + ω34ω42)

− ((ω24 + ω34)
2 + (ω24 − ω34)ω42)ω43 − ω24ω

2
43

))/
(
e34(ω42 + ω43)

(
ω24ω

2
42((ω24 + ω34)

2 + ω34ω42) − ω42
(
2(ω24 + ω34)

3

+ 3
(
ω2

24 + ω24ω34 + ω2
34

)
ω42 + (ω24 + ω34)ω

2
42

)
ω43

10
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+
(
ω34(ω24 + ω34)

2 − 3
(
ω2

24 + ω24ω34 + ω2
34

)
ω42 − 2(ω24 + ω34)ω

2
42

)
ω2

43

+ (ω24ω34 − (ω24 + ω34)ω42)ω
3
43

))
.

On the other hand, for the non-diagonal matrices (22) and the vectors (23) we have found the
following results. The matrix elements of E are obtained to be

e12 = (−c34e14
(
ω2

42 − ω2
43

)(
ω2

34(ω42 − ω43)
2 + (ω42 − ω43)(−ω34ω

2
42 − 6ω34ω42ω43 − ω2

43ω34
)

+ ω43ω
3
42 + ω42ω

3
43 + 6ω2

42ω
2
43

+
√

ω43
(
ω34 + ω42) − ω34ω42

(−2ω34
(
ω2

42 − ω2
43

)
+ 4ω43ω42(ω42 + ω43)

)))/
(
e24

(√
ω43(ω34 + ω42) − ω34ω42

(
e34ω43

(
ω2

42

(
ω2

34 − 10ω34ω42 + 5ω2
42

)
− 2(ω34 − 5ω42)ω42(ω34 + ω42)ω43 + (ω34 + ω42)

2ω2
43

)
+ c34ω42

(
ω2

34(ω42 − ω43)
2 − 2ω34(ω42 − ω43)

(
3ω2

42 + ω42ω43 + 2ω2
43

)
+ ω42

(
ω3

42 + 6ω2
42ω43 + 5ω42ω

2
43 + 4ω3

43

)))
+ e34ω42ω43

(
ω2

42

(
5ω2

34 − 10ω34ω42 + ω2
42

)
+ 10ω42

(−ω2
34 + ω2

42

)
ω43

+ 5(ω34 + ω42)
2ω2

43

)
+ c34

(
ω2

34(ω42 − ω43)
2
(
4ω2

42 + ω2
43

)
− 2ω34ω42(ω42 − ω43)(ω42 + ω43)

(
2ω2

42 + 2ω42ω43 + ω2
43

)
+ ω2

42ω43
(
4ω3

42 + 5ω2
42ω43 + 6ω42ω

2
43 + ω3

43

))))
,

e13 = (−e14ω43(ω42 − ω43))
/(

(c34ω42 + e34ω43)
√

ω43(ω34 + ω42) − ω34ω42

+ e34ω43ω42 + c34ω
2
43

)
.

As in the diagonal case the other matrix elements e14, e24 and e34 are free. The matrix elements
for Ē are found to be

ē13 = e13ω42,

ē14 = ((e14e34ω42(ω34 + ω42)ω43))/(c34(ω43 + ω42)
√

ω43(ω34 + ω42) − ω34ω42

+ e34(ω34 + ω42)ω43 + c34ω42(ω34 − ω43)),

ē34 = −e34ω43.

The non-free vector elements in this case are given by

v4 = (ω42 − ω43)/(e34(ω42 +
√

ω43(ω34 + ω42) − ω34ω42))

w3 = (e14ω42(ω34 + ω42))/(e34ω43(ω34 + ω42) + c34(ω42(ω34 − ω43)

+ (ω42 + ω43)
√

ω43(ω34 + ω42) − ω34ω42)).

Appendix B. The partition function

The coefficients ai’s for i = 1, . . . , 4 in (19) are found to be

a1 = −(
e14ω42

(
ω42((ω24 + ω34)

2 + ω34ω42) − ((ω24 + ω34)
2 + (ω24 − ω34)ω42)ω43

− ω24ω
2
43

)(
ω42((ω24 + ω34)

2 + ω34ω42) − (
(ω24 + ω34)

2 + 2ω24ω42 + ω2
42

)
ω43 − (2ω24

+ ω34 + 2ω42)ω
2
43 − ω3

43

)(
ω2

24 + ω34(ω34 + ω42) + ω24(2(ω34 + ω42) + ω43)
))/(

e34(ω42

+ ω43)
(
ω42(−(ω24 + ω34)

2 + ω24ω42) + ((ω24 + ω34)
2 + 2ω24ω42)ω43 + ω24ω

2
43

)(
ω24ω

2
42

× ((ω24 + ω34)
2 + ω34ω42) − ω42

(
2(ω24 + ω34)

3 + 3
(
ω2

24 + ω24ω34 + ω2
34

)
ω42 + (ω24

11
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+ ω34)ω
2
42

)
ω43 +

(
ω34(ω24 + ω34)

2 − 3
(
ω2

24 + ω24ω34 + ω2
34

)
ω42 − 2(ω24 + ω34)ω

2
42

)
ω2

43

+ (ω24ω34 − (ω24 + ω34)ω42)ω
3
43

))
,

a2 = −(
e14(ω24 + ω34)

2ω42
(
ω42((ω24 + ω34)

2 + ω34ω42) − ((ω24 + ω34)
2

+ (ω24 − ω34)ω42)ω43 − ω24ω
2
43

)(
ω42

(
ω2

24 + (ω34 + ω42)
2 + ω24(2ω34 + ω42)

)
− (

(ω24 + ω34)
2 − 2ω34ω42 − 2ω2

42

)
ω43 − (ω24 − ω42)ω

2
43

)(
ω42((ω24 + ω34)

2 + ω34ω42)

− (
(ω24 + ω34)

2 + 2ω24ω42 + ω2
42

)
ω43 − (2ω24 + ω34 + 2ω42)ω

2
43 − ω3

43

))/
(
e34(ω42 + ω43)

(
ω42(−(ω24 + ω34)

2 + ω24ω42) + ((ω24 + ω34)
2

+ 2ω24ω42)ω43 + ω24ω
2
43

)(
ω42((ω24 + ω34)

2 + ω34ω42)

− ((ω24 + ω34)
2 − 2ω34ω42)ω43 + ω34ω

2
43

)
× (

ω24ω
2
42(−(ω24 + ω34)

2 − ω34ω42) + ω42
(
2(ω24 + ω34)

3

+ 3
(
ω2

24 + ω24ω34 + ω2
34

)
ω42 + (ω24 + ω34)ω

2
42

)
ω43 + (−ω34(ω24 + ω34)

2

+ 3(ω2
24 + ω24ω34 + ω2

34)ω42 + 2(ω24 + ω34)ω
2
42)ω

2
43 + (−ω24ω34 + (ω24 + ω34)ω42)ω

3
43

))
,

a3 = −(
e14ω42(ω24 + ω34 + ω42 + ω43)

2
(
ω42((ω24 + ω34)

2 + ω34ω42) − ((ω24 + ω34)
2

+ (ω24 − ω34)ω42)ω43 − ω24ω
2
43

))/(
e34(ω42 + ω43)

(
ω24ω

2
42((ω24 + ω34)

2 + ω34ω42)

− ω42
(
2(ω24 + ω34)

3 + 3
(
ω2

24 + ω24ω34 + ω2
34

)
ω42 + (ω24 + ω34)ω

2
42

)
ω43 +

(
ω34(ω24

+ ω34)
2 − 3

(
ω2

24 + ω24ω34 + ω2
34

)
ω42 − 2(ω24 + ω34)ω

2
42

)
ω2

43 + (ω24ω34 − (ω24

+ ω34)ω42)ω
3
43

))
,

a4 = (
e14ω42

(
ω42((ω24 + ω34)

2 + ω34ω42) − ((ω24 + ω34)
2 + (ω24 − ω34)ω42)ω43

− ω24ω
2
43

)(
ω42

(
ω2

24 + (ω34 + ω42)
2 + ω24(2ω34 + ω42)

) − (
(ω24 + ω34)

2 − 2ω34ω42

− 2ω2
42

)
ω43 − (ω24 − ω42)ω

2
43

)(
ω2

24 + ω24(2ω34 + ω43) + ω34(ω34 + ω42

+ 2ω43)
))/(

e34(ω42 + ω43)
(
ω42((ω24 + ω34)

2 + ω34ω42) − (
(ω24 + ω34)

2

− 2ω34ω42
)
ω43 + ω34ω

2
43

)(
ω24ω

2
42((ω24 + ω34)

2 + ω34ω42) − ω42
(
2(ω24 + ω34)

3

+ 3
(
ω2

24 + ω24ω34 + ω2
34

)
ω42 + (ω24 + ω34)ω

2
42

)
ω43 +

(
ω34(ω24 + ω34)

2

− 3
(
ω2

24 + ω24ω34 + ω2
34

)
ω42 − 2(ω24 + ω34)ω

2
42

)
ω2

43 + (ω24ω34 − (ω24 + ω34)ω42)ω
3
43

))
,

The coefficients bi’s for i = 1, . . . , 4 in (25) are also found to be

b1 = (−c34e14ω42ω43
(
ω2

42ω43(ω42 + ω43)(3ω42 + ω43)
2 + ω2

34(ω42 − ω43)
2
(
8ω2

42

+ ω42ω43 + ω2
43

) − 2ω34ω42(ω42 − ω43)
(
4ω3

42 + 11ω2
42ω43 + 4ω42ω

2
43 + ω3

43

)
+

√
ω43(ω34 + ω42) − ω34ω42

(
2ω42

(
ω2

34(ω42 − ω43)
2 + 2ω34

(−3ω3
42 + ω2

42ω43 + ω42ω
2
43

+ ω3
43

)
+ ω42

(
ω3

42 + 8ω2
42ω43 + 5ω42ω

2
43 + 2ω3

43

)))))/(
e34

(
ω2

42 − ω2
43

)(
(−ω34ω42 + (ω34

+ ω42)ω43)
(
4e34ω42ω43(ω34(−ω42 + ω43) + ω42(ω42 + ω43)) + c34

(
ω42(ω42 + ω43)

3

− ω34(ω42 − ω43)
(
3ω2

42 + ω2
43

)))
+

√
ω43(ω34 + ω42) − ω34ω42

(
e34ω43

(
ω2

42

(
ω2

34

− 6ω34ω42 + ω2
42

) − 2(ω34 − 3ω42)ω42(ω34 + ω42)ω43 + (ω34 + ω42)
2ω2

43

)
+ c34ω42

(
ω2

34(ω42 − ω43)
2 − ω34(ω42 − ω43)

(
3ω2

42 + 2ω42ω43 + 3ω2
43

)
+ ω42ω43

(
3ω2

42 + 2ω42ω43 + 3ω2
43

)))))
,

b2 = (
c34e14ω42(ω42 + ω43)

(
ω2

34(ω42 − ω43)
2(3ω42 + 2ω43) + ω2

42ω43
(
ω2

42 + 10ω42ω43

+ 5ω2
43

) − ω34ω42(ω42 − ω43)
(
ω2

42 + 12ω42ω43 + 7ω2
43

)
+

√
ω43(ω34 + ω42) − ω34ω42

12
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× (
ω2

34(ω42 − ω43)
2 − ω34(ω42 − ω43)

(
3ω2

42 + 8ω42ω43 + ω2
43

)
+ ω42ω43

(
5ω2

42

+ 10ω42ω43 + ω2
43

))))/(
e34(ω42 − ω43)

(
(−ω34ω42 + (ω34 + ω42)ω43)

(−c34(5ω34 − ω42)

× ω3
42 + ω2

42(e34(−7ω34 + 5ω42) + c34(4ω34 + 6ω42))ω43 + ω42(−(c34 − 6e34)ω34

+ 5(c34 + 2e34)ω42)ω
2
43 + (e34(ω34 + ω42) + 2c34(ω34 + 2ω42))ω

3
43

)
+

√
ω43(ω34 + ω42) − ω34ω42

(
e34ω43

(
2ω2

34(ω42 − ω43)
2

− ω34ω42(ω42 − ω43)(9ω42 + 7ω43) + ω2
42

(
ω2

42

+ 10ω42ω43 + 5ω2
43

))
+ c34

(
2ω2

34ω42(ω42 − ω43)
2

− ω34(ω42 − ω43)
(
4ω3

42 + 6ω2
42ω43 + 5ω42ω

2
43 + ω3

43

)
+ ω42ω43

(
4ω3

42 + 5ω2
42ω43 + 6ω42ω

2
43 + ω3

43

)))))
,

b3 = (c34e14ω42(ω42 − ω43))/(e34(e34ω43 + c34ω42)
√

ω43(ω34 + ω42) − ω34ω42

+ e34ω43(e34ω42 + c34ω43)),

b4 = (−c34e14ω42(ω42 − ω43)
(
4ω42(ω34ω42 − (ω34 + ω42)ω43)(ω34(ω42 − ω43)

− ω42(ω42 + ω43)) +
√

ω43(ω34 + ω42) − ω34ω42
(
ω2

42

(
ω2

34 − 6ω34ω42 + ω2
42

)
− 2(ω34 − 3ω42)ω42(ω34 + ω42)ω43 + (ω34 + ω42)

2ω2
43

)))/(
e34(ω42 + ω43)

(
(3ω42 + ω43)

× (−ω34ω42 + (ω34 + ω42)ω43)
(
c34ω42

(
ω42(−ω34 + ω42) + (ω34 + ω42)ω43 + 2ω2

43

)
+ e34ω43(ω34(−ω42 + ω43) + ω42(3ω42 + ω43))

)
+ (−2ω34(ω42 − ω43)

+ ω42(ω42 + 3ω43))
(
e34ω42ω43(ω42(−3ω34 + ω42) + 3(ω34 + ω42)ω43)

+ c34
(−ω34(ω42 − ω43)(2ω2

42 + ω2
43) + ω42ω43

(
2ω2

42 + ω42ω43 + ω2
43

)))
+

√
ω43(ω34 + ω42) − ω34ω42

(
2e34ω43

(
ω2

34(ω42 − ω43)
2 + ω2

42(3ω42

+ ω43)(ω42 + 3ω43) + 4ω34ω42
(−2ω2

42 + ω42ω43 + ω2
43

))
+ c34

(
2ω2

34ω42(ω42 − ω43)
2 + ω34

(−9ω4
42 + 2ω3

42ω43

+ 6ω42ω
3
43 + ω4

43

)
+ ω42

(
ω4

42 + 10ω3
42ω43 + 10ω2

42ω
2
43 + 10ω42ω

3
43 + ω4

43

)))))
.
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